
 

 

 

  

Use curly braces to define a dictionary. Use colons to 
connect keys and values, and use commas to separate 
individual key-value pairs. 

Making a dictionary 

alien_0 = {'color': 'green', 'points': 5} 

 

 

 

Covers Python 3 and Python 2

You can loop through a dictionary in three ways: you can 
loop through all the key-value pairs, all the keys, or all the 
values. 
    A dictionary only tracks the connections between keys 
and values; it doesn't track the order of items in the 
dictionary. If you want to process the information in order, 
you can sort the keys in your loop. 

Looping through all key-value pairs 

# Store people's favorite languages. 
fav_languages = { 
    'jen': 'python', 
    'sarah': 'c', 
    'edward': 'ruby', 
    'phil': 'python', 
    } 
 
# Show each person's favorite language. 
for name, language in fav_languages.items(): 
    print(name + ": " + language) 

Looping through all the keys 

# Show everyone who's taken the survey. 
for name in fav_languages.keys(): 
    print(name) 

Looping through all the values 

# Show all the languages that have been chosen. 
for language in fav_languages.values(): 
    print(language) 

Looping through all the keys in order 

# Show each person's favorite language,  
#   in order by the person's name. 
for name in sorted(fav_languages.keys()): 
    print(name + ": " + language) 

 

 

Python's dictionaries allow you to connect pieces of 
related information. Each piece of information in a 
dictionary is stored as a key-value pair. When you 
provide a key, Python returns the value associated 
with that key. You can loop through all the key-value 
pairs, all the keys, or all the values.

 

To access the value associated with an individual key give 
the name of the dictionary and then place the key in a set of 
square brackets. If the key you're asking for is not in the 
dictionary, an error will occur. 
    You can also use the get() method, which returns None 
instead of an error if the key doesn't exist. You can also 
specify a default value to use if the key is not in the 
dictionary. 

Getting the value associated with a key 

alien_0 = {'color': 'green', 'points': 5} 
 
print(alien_0['color']) 
print(alien_0['points']) 

Getting the value with get() 

alien_0 = {'color': 'green'} 
 
alien_color = alien_0.get('color') 
alien_points = alien_0.get('points', 0) 
 
print(alien_color) 
print(alien_points) 

 

You can modify the value associated with any key in a 
dictionary. To do so give the name of the dictionary and 
enclose the key in square brackets, then provide the new 
value for that key. 

Modifying values in a dictionary 

alien_0 = {'color': 'green', 'points': 5} 
print(alien_0) 
 
# Change the alien's color and point value. 
alien_0['color'] = 'yellow' 
alien_0['points'] = 10 
print(alien_0) 

 

You can remove any key-value pair you want from a 
dictionary. To do so use the del keyword and the dictionary 
name, followed by the key in square brackets. This will 
delete the key and its associated value. 

Deleting a key-value pair 

alien_0 = {'color': 'green', 'points': 5} 
print(alien_0) 
 
del alien_0['points'] 
print(alien_0) 

 

You can store as many key-value pairs as you want in a 
dictionary, until your computer runs out of memory. To add 
a new key-value pair to an existing dictionary give the name 
of the dictionary and the new key in square brackets, and 
set it equal to the new value. 
    This also allows you to start with an empty dictionary and 
add key-value pairs as they become relevant. 

Adding a key-value pair 

alien_0 = {'color': 'green', 'points': 5} 
 
alien_0['x'] = 0 
alien_0['y'] = 25 
alien_0['speed'] = 1.5 

Adding to an empty dictionary 

alien_0 = {} 
alien_0['color'] = 'green' 
alien_0['points'] = 5 

 

Try running some of these examples on pythontutor.com. 

 

You can find the number of key-value pairs in a dictionary. 

Finding a dictionary's length 

num_responses = len(fav_languages) 

 

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse


 

It's sometimes useful to store a set of dictionaries in a list; 
this is called nesting. 

Storing dictionaries in a list 

# Start with an empty list. 
users = [] 
 
# Make a new user, and add them to the list. 
new_user = { 
    'last': 'fermi', 
    'first': 'enrico', 
    'username': 'efermi', 
    } 
users.append(new_user) 
 
# Make another new user, and add them as well. 
new_user = { 
    'last': 'curie', 
    'first': 'marie', 
    'username': 'mcurie', 
    } 
users.append(new_user) 
 
# Show all information about each user. 
for user_dict in users: 
    for k, v in user_dict.items(): 
        print(k + ": " + v) 
    print("\n")  

You can also define a list of dictionaries directly, 
without using append(): 

# Define a list of users, where each user 
#   is represented by a dictionary. 
users = [ 
    { 
        'last': 'fermi', 
        'first': 'enrico', 
        'username': 'efermi', 
    }, 
    { 
        'last': 'curie', 
        'first': 'marie', 
        'username': 'mcurie', 
    }, 
] 
 
# Show all information about each user. 
for user_dict in users: 
    for k, v in user_dict.items(): 
        print(k + ": " + v) 
    print("\n") 

 

Storing a list inside a dictionary alows you to associate 
more than one value with each key. 

Storing lists in a dictionary 

# Store multiple languages for each person. 
fav_languages = { 
    'jen': ['python', 'ruby'], 
    'sarah': ['c'], 
    'edward': ['ruby', 'go'], 
    'phil': ['python', 'haskell'], 
} 
 
# Show all responses for each person. 
for name, langs in fav_languages.items(): 
    print(name + ": ") 
    for lang in langs: 
        print("- " + lang) 

 

More cheat sheets available at

Standard Python dictionaries don't keep track of the order 
in which keys and values are added; they only preserve the 
association between each key and its value. If you want to 
preserve the order in which keys and values are added, use 
an OrderedDict. 

Preserving the order of keys and values 

from collections import OrderedDict 
 
# Store each person's languages, keeping 
#  track of who respoded first. 
fav_languages = OrderedDict() 
 
fav_languages['jen'] = ['python', 'ruby'] 
fav_languages['sarah'] = ['c'] 
fav_languages['edward'] = ['ruby', 'go'] 
fav_languages['phil'] = ['python', 'haskell'] 
 
# Display the results, in the same order they 
#  were entered. 
for name, langs in fav_languages.items(): 
    print(name + ":") 
    for lang in langs: 
        print("- " + lang) 

 

You can store a dictionary inside another dictionary. In this 
case each value associated with a key is itself a dictionary. 

Storing dictionaries in a dictionary 

users = { 
    'aeinstein': { 
        'first': 'albert', 
        'last': 'einstein', 
        'location': 'princeton', 
        }, 
    'mcurie': { 
        'first': 'marie', 
        'last': 'curie', 
        'location': 'paris', 
        }, 
    } 
 
for username, user_dict in users.items(): 
    print("\nUsername: " + username) 
    full_name = user_dict['first'] + " " 
    full_name += user_dict['last'] 
    location = user_dict['location'] 
 
    print("\tFull name: " + full_name.title()) 
    print("\tLocation: " + location.title()) 

 

Nesting is extremely useful in certain situations. However, 
be aware of making your code overly complex. If you're 
nesting items much deeper than what you see here there 
are probably simpler ways of managing your data, such as 
using classes. 

 

You can use a loop to generate a large number of 
dictionaries efficiently, if all the dictionaries start out with 
similar data. 

A million aliens 

aliens = [] 
 
# Make a million green aliens, worth 5 points 
#  each. Have them all start in one row. 
for alien_num in range(1000000): 
    new_alien = {} 
    new_alien['color'] = 'green' 
    new_alien['points'] = 5 
    new_alien['x'] = 20 * alien_num 
    new_alien['y'] = 0 
    aliens.append(new_alien) 
 
# Prove the list contains a million aliens. 
num_aliens = len(aliens) 
 
print("Number of aliens created:") 
print(num_aliens) 

 

http://ehmatthes.github.io/pcc/cheatsheets/README.html

